Send to

Choose Destination
See comment in PubMed Commons below
Neuroscience. 2007 Mar 2;145(1):288-302. Epub 2007 Jan 16.

Connections of the caudal anterior cingulate cortex in rabbit: neural circuitry participating in the acquisition of trace eyeblink conditioning.

Author information

Department of Physiology, Northwestern University Institute for Neuroscience, 303 East Chicago Avenue, Chicago, IL 60611, USA.


The caudal anterior cingulate cortex (cAC) is an essential component of the circuitry involved in acquisition of forebrain-dependent trace eyeblink conditioning. Lesions of the cAC prevent trace eyeblink conditioning [Weible AP, McEchron MD, Disterhoft JF (2000) Cortical involvement in acquisition and extinction of trace eyeblink conditioning. Behav Neurosci 114(6):1058-1067]. The patterns of activation of cAC neurons recorded in vivo suggest an attentional role for this structure early in training [Weible AP, Weiss C, Disterhoft JF (2003) Activity profiles of single neurons in caudal anterior cingulate cortex during trace eyeblink conditioning in the rabbit. J Neurophysiol 90(2):599-612]. The goal of the present study was to identify connections of the portion of the rabbit cAC previously demonstrated to be involved in trace eyeblink conditioning, using the neuronal tract tracer wheat germ agglutinin conjugated to horseradish peroxidase, to better understand how the cAC contributes to the process of associative learning. Reciprocal connections with the claustrum provide a route for the transfer of sensory information between the cAC and neocortical and allocortical regions also involved in learning. Connections with components of the basal forebrain cholinergic system are described, with relevance to the proposed attentional role of the cAC. Reciprocal and unidirectional connections were in evidence in multiple thalamic regions, including the medial dorsal nucleus, which have been implicated in a variety of conditioning paradigms. Anterograde connections with the caudate and lateral pontine nuclei provide access to forebrain motor and brainstem sensory circuitry, respectively. The relevance of these connections to acquisition of the trace conditioned reflex is discussed.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center