Send to

Choose Destination
J Chem Phys. 2007 Jan 7;126(1):014103.

Performance of density functionals for first row transition metal systems.

Author information

Department of Chemistry, Yale University, P.O. Box 208107, New Haven, CT 06520-8107, USA.


This article investigates the performance of five commonly used density functionals, B3LYP, BP86, PBE0, PBE, and BLYP, for studying diatomic molecules consisting of a first row transition metal bonded to H, F, Cl, Br, N, C, O, or S. Results have been compared with experiment wherever possible. Open-shell configurations are found more often in the order PBE0>B3LYP>PBE approximately BP86>BLYP. However, on average, 58 of 63 spins are correctly predicted by any functional, with only small differences. BP86 and PBE are slightly better for obtaining geometries, with errors of only 0.020 A. Hybrid functionals tend to overestimate bond lengths by a few picometers and underestimate bond strengths by favoring open shells. Nonhybrid functionals usually overestimate bond energies. All functionals exhibit similar errors in bond energies, between 42 and 53 kJmol. Late transition metals are found to be better modeled by hybrid functionals, whereas nonhybrid functionals tend to have less of a preference. There are systematic errors in predicting certain properties that could be remedied. BLYP performs the best for ionization potentials studied here, PBE0 the worst. In other cases, errors are similar. Finally, there is a clear tendency for hybrid functionals to give larger dipole moments than nonhybrid functionals. These observations may be helpful in choosing and improving existing functionals for tasks involving transition metals, and for designing new, improved functionals.


Supplemental Content

Full text links

Icon for American Institute of Physics
Loading ...
Support Center