Send to

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10614-8.

Introduction of disease-related mitochondrial DNA deletions into HeLa cells lacking mitochondrial DNA results in mitochondrial dysfunction.

Author information

Department of Biochemistry, Saitama Cancer Center Research Institute, Japan.


Mutant mitochondrial DNA with large-scale deletions (delta-mtDNA) has been frequently observed in patients with chronic progressive external ophthalmoplegia (CPEO), a subgroup of the mitochondrial encephalomyopathies. To exclude involvement of the nuclear genome in expression of the mitochondrial dysfunction characteristic of CPEO, we introduced the mtDNA of a CPEO patient into clonal mtDNA-less HeLa cells and isolated cybrid clones. Quantitation of delta-mtDNA in the cybrids revealed that delta-mtDNA was selectively propagated with higher levels of delta-mtDNA correlating with slower cellular growth rate. In these cybrid clones, translational complementation of the missing tRNAs occurred only when delta-mtDNA was less than 60% of the total mtDNA, whereas accumulation of delta-mtDNA to greater than 60% resulted in progressive inhibition of overall mitochondrial translation as well as reduction of cytochrome c oxidase activity throughout the organelle population. Because these cybrids shared the same nuclear background as HeLa cells, these results suggest that large-scale deletion mutations of mtDNA alone are sufficient for the mitochondrial dysfunction characteristic of CPEO.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center