Format

Send to

Choose Destination
Neuroimage. 2007 Feb 15;34(4):1473-86. Epub 2006 Dec 22.

Modeling dendrite density from magnetic resonance diffusion measurements.

Author information

1
Center of Functionally Integrative Neuroscience, Aarhus University Hospital-Arhus Sygehus, Nørrebrogade 44, Building 30, 8000 Arhus C, Denmark. sune@pet.auh.dk

Abstract

Diffusion-weighted imaging (DWI) provides a noninvasive tool to probe tissue microstructure. We propose a simplified model of neural cytoarchitecture intended to capture the essential features important for water diffusion as measured by NMR. Two components contribute to the NMR signal in this model: (i) the dendrites and axons, which are modeled as long cylinders with two diffusion coefficients, parallel (D(L)) and perpendicular (D(T)) to the cylindrical axis, and (ii) an isotropic monoexponential diffusion component describing water diffusion within and across all other structures, i.e., in extracellular space and glia cells. The model parameters are estimated from 153 diffusion-weighted images acquired from a formalin-fixed baboon brain. A close correspondence between the data and the signal model is found, with the model parameters consistent with literature values. The model provides an estimate of dendrite density from noninvasive MR diffusion measurements, a parameter likely to be of value for understanding normal as well as abnormal brain development and function.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center