Format

Send to

Choose Destination
Virology. 2007 May 10;361(2):263-73. Epub 2006 Dec 22.

Members of the HCMV US12 family of predicted heptaspanning membrane proteins have unique intracellular distributions, including association with the cytoplasmic virion assembly complex.

Author information

1
Department of Molecular Genetics, Section of Virology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA.

Abstract

The human cytomegalovirus (HCMV) US12 gene family is a group of 10 predicted seven-transmembrane domain proteins that have some features in common with G-protein-coupled receptors. Little is known of their patterns of expression, localization, or functional interactions. Here, we studied the intracellular localization of three US12 family members, US14, US17, and US18, with respect to various intracellular markers and the cytoplasmic virion assembly compartment (AC). The three proteins have distinct patterns of expression, which include associations with the AC. US14 is often distributed in a uniform granular manner throughout the cytoplasm, concentrating in the AC in some cells. US17 is expressed in a segmented manner, with its N-terminal domain localizing to the periphery of what we show here to be the AC and the C-terminal domain localizing to nuclei and the cytoplasm [Das, S., Skomorovska-Prokvolit, Y., Wang, F. Z., Pellett, P.E., 2006. Infection-dependent nuclear localization of US17, a member of the US12 family of human cytomegalovirus-encoded seven-transmembrane proteins. J. Virol. 80, 1191-1203]. Here, we show that the C-terminal domain is present at the center of the AC, in close association with markers of early endosomes; the N-terminal staining corresponds to an area stained by markers for the Golgi and trans-Golgi. US18 is distributed throughout the cytoplasm, concentrating in the AC at later stages of infection; it is localized more to the periphery of the AC than are US14 and US17C, in association with markers of the trans-Golgi. Although not detected in virions, their structures and localization in various zones within the AC suggest possible roles for these proteins in the process of virion maturation and egress.

PMID:
17188320
DOI:
10.1016/j.virol.2006.11.019
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center