Format

Send to

Choose Destination
See comment in PubMed Commons below
RNA. 2007 Feb;13(2):267-80. Epub 2006 Dec 21.

Long-distance RNA-RNA interactions between terminal elements and the same subset of internal elements on the potato virus X genome mediate minus- and plus-strand RNA synthesis.

Author information

1
Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh 27695-7622, USA.

Abstract

Potexvirus genomes contain conserved terminal elements that are complementary to multiple internal octanucleotide elements. Both local sequences and structures at the 5' terminus and long-distance interactions between this region and internal elements are important for accumulation of potato virus X (PVX) plus-strand RNA in vivo. In this study, the role of the conserved hexanucleotide motif within SL3 of the 3' NTR and internal conserved octanucleotide elements in minus-strand RNA synthesis was analyzed using both a template-dependent, PVX RNA-dependent RNA polymerase (RdRp) extract and a protoplast replication system. Template analyses in vitro indicated that 3' terminal templates of 850 nucleotides (nt), but not 200 nt, supported efficient, minus-strand RNA synthesis. Mutational analyses of the longer templates indicated that optimal transcription requires the hexanucleotide motif in SL3 within the 3' NTR and the complementary CP octanucleotide element 747 nt upstream. Additional experiments to disrupt interactions between one or more internal conserved elements and the 3' hexanucleotide element showed that long-distance interactions were necessary for minus-strand RNA synthesis both in vitro and in vivo. Additionally, multiple internal octanucleotide elements could serve as pairing partners with the hexanucleotide element in vivo. These cis-acting elements and interactions correlate in several ways to those previously observed for plus-strand RNA accumulation in vivo, suggesting that dynamic interactions between elements at both termini and the same subset of internal octanucleotide elements are required for both minus- and plus-strand RNA synthesis and potentially other aspects of PVX replication.

PMID:
17185361
PMCID:
PMC1781375
DOI:
10.1261/rna.243607
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center