Format

Send to

Choose Destination
See comment in PubMed Commons below
J Immunol. 2007 Jan 1;178(1):436-45.

A novel function for galectin-1 at the crossroad of innate and adaptive immunity: galectin-1 regulates monocyte/macrophage physiology through a nonapoptotic ERK-dependent pathway.

Author information

1
División Inmunogenética. Hospital de Clínicas "José de San Martín," Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.

Abstract

Several environmental factors can differentially regulate monocyte and macrophage response patterns, resulting in the display of distinct functional phenotypes. Galectin-1, an endogenous lectin found at peripheral lymphoid organs and inflammatory sites, has shown immunoregulatory activity in vivo in experimental models of autoimmunity and cancer. Whereas compelling evidence has been accumulated regarding the effects of galectin-1 on T cell fate, limited information is available on how galectin-1 may impact other immune cell types. In the present study, we report a novel role for galectin-1 in the regulation of monocyte and macrophage physiology. Treatment with galectin-1 in vitro differentially regulates constitutive and inducible FcgammaRI expression on human monocytes and FcgammaRI-dependent phagocytosis. In addition, galectin-1 inhibits IFN-gamma-induced MHC class II (MHC-II) expression and MHC-II-dependent Ag presentation in a dose-dependent manner. These regulatory effects were also evident in mouse macrophages recruited in response to inflammatory stimuli following treatment with recombinant galectin-1 and further confirmed in galectin-1-deficient mice. Investigation of the mechanisms involved in these functions showed that galectin-1 does not affect survival of human monocytes, but rather influences FcgammaRI- and MHC-II-dependent functions through active mechanisms involving modulation of an ERK1/2-dependent pathway. Our results provide evidence of a novel unrecognized role for galectin-1 in the control of monocyte/macrophage physiology with potential implications at the crossroad of innate and adaptive immunity.

PMID:
17182582
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center