Format

Send to

Choose Destination
See comment in PubMed Commons below
Biochem Pharmacol. 2007 Mar 15;73(6):793-804. Epub 2006 Dec 2.

Protective effect of baicalein against endotoxic shock in rats in vivo and in vitro.

Author information

1
Department of Pharmacology, National Defense Medical Center, P.O. Box 90048-504, Nei-Hu 114, Taipei, Taiwan.

Abstract

Dried roots of Scutellaria baicalensis Georgi (Huang qin) are widely used in traditional Chinese medicine. Baicalein is a major bioactive flavonoid component of H. qin that shows a wide range of biological activities, including antioxidant and anti-inflammatory actions. We evaluated therapeutic effects and possible mechanisms of action of baicalein on circulatory failure and vascular dysfunction during sepsis induced by lipopolysaccharide (LPS; 10 mg/kg, i.v.) in anesthetized rats. Treatment of the rats with baicalein (20 mg/kg, i.v.) significantly attenuated the deleterious hemodynamic changes of hypotension and tachycardia caused by LPS and significantly inhibited the elevation of plasma tumor necrosis factor alpha (TNF-alpha). Baicalein also decreased levels of inducible nitric oxide synthase (iNOS) and the overproduction of NO and superoxide anions caused by LPS. It also increased the survival rate of ICR mice (25-30 g) challenged by LPS (60 mg/kg). Moreover, infiltration of neutrophils into the liver and lungs of rats 6h after treatment with LPS was also reduced by baicalein. To investigate the mechanism of action of baicalein on sepsis, RAW 264.7 cells were used as a model. Baicalein inhibited iNOS protein production, and suppressed LPS-induced degradation of IkappaBalpha, the formation of a nuclear factor kappa B (NF-kappaB)-DNA complex and NF-kappaB-dependent reporter gene expression. Thus, the therapeutic effects of baicalein were associated with reductions in TNF-alpha and superoxide anion levels during sepsis. The inhibitory effects of baicalein on iNOS production may be mediated by inhibition of the activation of NF-kappaB. Baicalein may thus prove a potential agent against endotoxemia.

PMID:
17182007
DOI:
10.1016/j.bcp.2006.11.025
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center