Send to

Choose Destination
Mol Microbiol. 2007 Feb;63(3):848-58. Epub 2006 Dec 20.

Antimicrobial peptides activate the Vibrio cholerae sigmaE regulon through an OmpU-dependent signalling pathway.

Author information

Program in Immunology, Tufts University and Howard Hughes Medical Institute, 136 Harrison Avenue, Boston, MA 02111, USA.


Vibrio cholerae, an enteric pathogen, is subject to assault by several membrane-acting, host gut-derived antimicrobial peptides (AP). We previously found that a major V. cholerae outer membrane protein, OmpU, confers resistance to polymyxin B and to a bioactive peptide (P2) derived from the human bactericidal/permeability-increasing protein. Here, we report that the alternative sigma factor sigma(E) also plays a critical role in determining V. cholerae resistance to AP and that OmpU and sigma(E) lie in the same pathway. In fact, we found that OmpU is a key determinant of basal sigma(E) expression. We also found that sublethal AP exposure activates sigma(E) and the sigma(E)-mediated periplasmic stress response. sigma(E) is not activated by P2 in V. cholerae cells lacking OmpU or DegS, a periplasmic protease that controls sigma(E) activity. The lack of AP-elicited sigma(E) activation in a strain harbouring a point mutation in OmpU's putative DegS-binding residues provides support for a link between OmpU and DegS-mediated activation of sigma(E). We propose that AP-induced membrane perturbations change the conformation of OmpU to trigger a DegS-dependent sigma(E)-activating cascade. Thus, OmpU appears to act as a sensor component in a signal transduction pathway.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center