Format

Send to

Choose Destination
Environ Sci Technol. 2006 Dec 1;40(23):7329-35.

Metal-catalyzed reduction of N-nitrosodimethylamine with hydrogen in water.

Author information

1
Department of Civil & Environmental Engineering, Stanford University, Stanford, California 94305-4020, USA.

Abstract

There is considerable need for the rapid destruction of N-nitrosodimethylamine (NDMA) in water because current alternative treatment methods are relatively inefficient. Powdered metal catalysts in conjunction with hydrogen gas showed notable potential for rapid destruction of N-nitrosodimethylamine (NDMA) in water. Palladium, copper-enhanced palladium, and nickel catalysts showed significant efficacy for NDMA reduction, with observed half-lives on the order of hours using 10 mg L(-1) catalyst metal. Other catalysts were screened because of their well-documented efficacy for reduction of halogenated hydrocarbons, including zerovalent iron, nickel-enhanced iron, nickel, and manganese. Starting with 100 microg L(-1) NDMA, a level observed at multiple field sites, pseudo-first-order kinetics were observed for all catalysts tested. No reaction intermediates were observed in any experiment; the amine group of NDMA was cleaved and reduced to dimethylamine with carbon balance in excess of 97%. Reductive catalysis may prove an efficient technology for mitigating the health risk posed by NDMA; this study provides the foundation for mechanistic and longevity research.

PMID:
17180985
[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center