Send to

Choose Destination
Genetics. 2007 Mar;175(3):1059-70. Epub 2006 Dec 18.

Epigenetic modifications of distinct sequences of the p1 regulatory gene specify tissue-specific expression patterns in maize.

Author information

Department of Crop and Soil Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA.


Tandemly repeated endogenous genes are common in plants, but their transcriptional regulation is not well characterized. In maize, the P1-wr allele of pericarp color1 is composed of multiple copies arranged in a head-to-tail fashion. P1-wr confers a white kernel pericarp and red cob glume pigment phenotype that is stably inherited over generations. To understand the molecular mechanisms that regulate tissue-specific expression of P1-wr, we have characterized P1-wr*, a spontaneous loss-of-function epimutation that shows a white kernel pericarp and white cob glume phenotype. As compared to its progenitor P1-wr, the P1-wr* is hypermethylated in exon 1 and intron 2 regions. In the presence of the epigenetic modifier Ufo1 (Unstable factor for orange1), P1-wr* plants exhibit a range of cob glume pigmentation whereas pericarps remain colorless. In these plants, the level of cob pigmentation directly correlates with the degree of DNA demethylation in the intron 2 region of p1. Further, genomic bisulfite sequencing indicates that a 168-bp region of intron 2 is significantly hypomethylated in both CG and CNG context in P1-wr* Ufo1 plants. Interestingly, P1-wr* Ufo1 plants did not show any methylation change in a distal enhancer region that has previously been implicated in Ufo1-induced gain of pericarp pigmentation of the P1-wr allele. These results suggest that distinct regulatory sequences in the P1-wr promoter and intron 2 regions can undergo independent epigenetic modifications to generate tissue-specific expression patterns.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center