Send to

Choose Destination
See comment in PubMed Commons below
Genetics. 2007 Mar;175(3):1071-7. Epub 2006 Dec 18.

Cis-regulatory elements in the Accord retrotransposon result in tissue-specific expression of the Drosophila melanogaster insecticide resistance gene Cyp6g1.

Author information

Centre for Environmental and Stress Adaptation Research, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Victoria, Australia.


Transposable elements are a major mutation source and powerful agents of adaptive change. Some transposable element insertions in genomes increase to a high frequency because of the selective advantage the mutant phenotype provides. Cyp6g1-mediated insecticide resistance in Drosophila melanogaster is due to the upregulation of the cytochrome P450 gene Cyp6g1, leading to the resistance to a variety of insecticide classes. The upregulation of Cyp6g1 is correlated with the presence of the long terminal repeat (LTR) of an Accord retrotransposon inserted 291bp upstream of the Cyp6g1 transcription start site. This resistant allele (DDT-R) is currently at a high frequency in D. melanogaster populations around the world. Here, we characterize the spatial expression of Cyp6g1 in insecticide-resistant and -susceptible strains. We show that the Accord LTR insertion is indeed the resistance-associated mutation and demonstrate that the Accord LTR carries regulatory sequences that increase the expression of Cyp6g1 in tissues important for detoxification, the midgut, Malpighian tubules, and the fat body. This study provides a significant example of how changes in tissue-specific gene expression caused by transposable-element insertions can contribute to adaptation.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center