Format

Send to

Choose Destination
J Agric Food Chem. 2006 Dec 27;54(26):10141-50.

A novel serine protease cryptolepain from Cryptolepis buchanani: purification and biochemical characterization.

Author information

1
Molecular Biology Unit, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India.

Abstract

A novel protease is purified to homogeneity from the latex of a medicinally important plant Cryptolepis buchanani of family Apocynaceae (formerly Asclepiadaceae). The enzyme named cryptolepain has a molecular mass of 50.5 kDa. The isoelectric point and extinction coefficient (epsilon280nm1%) are 6.0 and 26.4, respectively. Cryptolepain contains 15 tryptophans, 41 tyrosines, and eight cysteine residues forming four disulfide bridges. The detectable carbohydrate moiety in the enzyme was found to be 6-7%. Cryptolepain hydrolyzes denatured natural substrates like casein, azocasein, and azoalbumin with high specific activity. The protease is exclusively inhibited by serine protease inhibitors phenylmethansulfonyl fluoride and diisopropyl fluorophosphate. Hydrolysis of azoalbumin by the cryptolepain is optimal in the pH range of 8-10 and temperatures of 65-75 degrees C. The enzyme shows high stability against pH (2.5-11.5), temperature (up to 80 degrees C), and chemical denaturants. The Km value of the enzyme was found to be 10 microM with azocasein as the substrate. The N-terminal sequence of cryptolepain is unique and shows only little homology to other known serine proteases, which makes this enzyme an ideal candidate for our ongoing biochemical and structure-function investigations of proteases. Easy availability of the latex and simple purification procedures make the enzyme a good system for exploring the biophysical chemistry of serine proteases as well as applications in the food industry.

PMID:
17177552
DOI:
10.1021/jf062206a
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center