Format

Send to

Choose Destination
See comment in PubMed Commons below
Insect Biochem Mol Biol. 2007 Jan;37(1):48-71. Epub 2006 Oct 18.

Transcriptome analysis of the salivary glands of Dermacentor andersoni Stiles (Acari: Ixodidae).

Author information

1
School of Medicine, Department of Immunology, University of Connecticut Health Center, 263 Farmington Avenue, MC3710, Farmington, CT 06030, USA. falarcon@up.uchc.edu

Abstract

Amongst blood-feeding arthropods, ticks of the family Ixodidae (hard ticks) are vectors and reservoirs of a greater variety of infectious agents than any other ectoparasite. Salivary glands of ixodid ticks secrete a large number of pharmacologically active molecules that not only facilitate feeding but also promote establishment of infectious agents. Genomic, proteomic and immunologic characterization of bioactive salivary gland molecules are, therefore, important as they offer new insights into molecular events occurring at the tick-host interface and they have implications for development of novel control strategies. The present work uses complementary DNA (cDNA) sequence analysis to identify salivary gland transcripts expressed by the Rocky Mountain wood tick, Dermacentor andersoni, a vector of the human pathogens causing Rocky Mountain spotted fever, Colorado tick fever, tularemia, and Powassan encephalitis as well as the veterinary pathogen Anaplasma marginale. Dermacentor andersoni is also capable of inducing tick paralysis. Automated single-pass DNA sequencing was conducted on 1440 randomly selected cDNA clones from the salivary glands of adult female D. andersoni collected during the early stages of feeding (18-24h). Analysis of the expressed sequence tags (ESTs) resulted in 544 singletons and 218 clusters with more than one quality read and attempts were made to assign putative functions to tick genes based on amino acid identity to published protein databases. Approximately 25.6% (195) of the sequences showed limited or no homology to previously identified gene products. A number of novel sequences were identified which presented significant sequence similarity to mammalian genes normally associated with extracellular matrix (ECM), regulation of immune responses, tumor suppression, and wound healing. Several coding sequences possessed various degrees of homology to previously described proteins from other tick species. Preliminary nucleotide variation analysis of these and other tick sequences suggests extensive nucleotide diversity, which has implications for evolution of tick feeding. Intra-species diversity studies can be a promising tool for identifying sequence variations potentially associated with phenotypic traits affecting vector-host-pathogen interactions.

PMID:
17175446
DOI:
10.1016/j.ibmb.2006.10.002
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center