Send to

Choose Destination
Nat Cell Biol. 2007 Jan;9(1):106-12. Epub 2006 Dec 17.

Cdk and APC activities limit the spindle-stabilizing function of Fin1 to anaphase.

Author information

Department of Physiology, University of California, UCSF Mailcode 2200, Genentech Hall Room N312B, 600 16th Street, San Francisco, CA 94158-2517, USA.


The fidelity of chromosome segregation depends on proper regulation of mitotic spindle behaviour. In anaphase, spindle stability is promoted by the dephosphorylation of cyclin-dependent kinase (Cdk) substrates, which results from Cdk inactivation and phosphatase activation. Few of the critical Cdk targets have been identified. Here, we identify the budding-yeast protein Fin1 (ref. 7) as a spindle-stabilizing protein whose activity is strictly limited to anaphase by changes in its phosphorylation state and rate of degradation. Phosphorylation of Fin1 from S phase to metaphase, by the cyclin-dependent kinase Clb5-Cdk1, inhibits Fin1 association with the spindle. In anaphase, when Clb5-Cdk1 is inactivated, Fin1 is dephosphorylated by the phosphatase Cdc14. Fin1 dephosphorylation targets it to the poles and microtubules of the elongating spindle, where it contributes to spindle integrity. A non-phosphorylatable Fin1 mutant localizes to the spindle before anaphase and impairs efficient chromosome segregation. As cells complete mitosis and disassemble the spindle, the ubiqutin ligase APC(Cdh1) targets Fin1 for destruction. Our studies illustrate how phosphorylation-dependent changes in the behaviour of Cdk1 substrates influence complex mitotic processes.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Nature Publishing Group
Loading ...
Support Center