Send to

Choose Destination
EMBO J. 1991 Nov;10(11):3289-96.

Targeted genetic inactivation of the photosystem I reaction center in the cyanobacterium Synechocystis sp. PCC 6803.

Author information

DOE-Plant Research Laboratory, Michigan State University, East Lansing 48824.


We describe the first complete segregation of a targeted inactivation of psaA encoding one of the P700-chlorophyll a apoproteins of photosystem (PS) I. A kanamycin resistance gene was used to interrupt the psaA gene in the unicellular cyanobacterium Synechocystis sp. PCC 6803. Selection of a fully segregated mutant, ADK9, was performed under light-activated heterotrophic growth (LAHG) conditions; complete darkness except for 5 min of light every 24 h and 5 mM glucose. Under these conditions, wild-type cells showed a 4-fold decrease in chlorophyll (chl) per cell, primarily due to a decrease of PS I reaction centers. Evidence for the absence of PS I in ADK9 includes: the lack of EPR (electron paramagnetic resonance) signal I, from P700+; undetectable P700-apoprotein; greatly reduced whole-chain photosynthesis rates; and greatly reduced chl per cell, resulting in a turquoise blue phenotype. The PS I peripheral proteins PSA-C and PSA-D were not detected in this mutant. ADK9 does assemble near wild-type levels of functional PS II per cell, evidenced by: EPR signal II from YD+; high rates of oxygen evolution with 2,6-dichloro-p-benzoquinone (DCBQ), an electron acceptor from PS II; and accumulation of D1, a PS II core polypeptide. The success of this transformation indicates that this cyanobacterium may be utilized for site-directed mutagenesis of the PS I core.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Wiley Icon for PubMed Central
Loading ...
Support Center