Format

Send to

Choose Destination
See comment in PubMed Commons below
Plant Physiol. 2007 Feb;143(2):732-44. Epub 2006 Dec 15.

Nitrogen-dependent posttranscriptional regulation of the ammonium transporter AtAMT1;1.

Author information

1
Molecular Plant Nutrition, Institute of Plant Nutrition, University of Hohenheim, D-70593 Stuttgart, Germany.

Abstract

Ammonium transporter (AMT) proteins of the AMT family mediate the transport of ammonium across plasma membranes. To investigate whether AMTs are regulated at the posttranscriptional level, a gene construct consisting of the cauliflower mosaic virus 35S promoter driving the Arabidopsis (Arabidopsis thaliana) AMT1;1 gene was introduced into tobacco (Nicotiana tabacum). Ectopic expression of AtAMT1;1 in transgenic tobacco lines led to high transcript levels and protein levels at the plasma membrane and translated into an approximately 30% increase in root uptake capacity for 15N-labeled ammonium in hydroponically grown transgenic plants. When ammonium was supplied as the major nitrogen (N) form but at limiting amounts to soil-grown plants, transgenic lines overexpressing AtAMT1;1 did not show enhanced growth or N acquisition relative to wild-type plants. Surprisingly, steady-state transcript levels of AtAMT1;1 accumulated to higher levels in N-deficient roots and shoots of transgenic tobacco plants in spite of expression being controlled by the constitutive 35S promoter. Moreover, steady-state transcript levels were decreased after addition of ammonium or nitrate in N-deficient roots, suggesting a role for N availability in regulating AtAMT1;1 transcript abundance. Nitrogen deficiency-dependent accumulation of AtAMT1;1 mRNA was also observed in 35S:AtAMT1;1-transformed Arabidopsis shoots but not in roots. Evidence for a regulatory role of the 3'-untranslated region of AtAMT1;1 alone in N-dependent transcript accumulation was not found. However, transcript levels of AtAMT1;3 did not accumulate in a N-dependent manner, even though the same T-DNA insertion line atamt1;1-1 was used for 35S:AtAMT1;3 expression. These results show that the accumulation of AtAMT1;1 transcripts is regulated in a N- and organ-dependent manner and suggest mRNA turnover as an additional mechanism for the regulation of AtAMT1;1 in response to the N nutritional status of plants.

PMID:
17172286
PMCID:
PMC1803739
DOI:
10.1104/pp.106.093237
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center