Format

Send to

Choose Destination
Biomaterials. 2007 Mar;28(8):1470-9. Epub 2006 Dec 12.

Efficient differentiation of CD14+ monocytic cells into endothelial cells on degradable biomaterials.

Author information

1
Department of Pathology and Laboratory Medicine, University Medical Center Groningen, Medical Biology Section, University of Groningen, Groningen, The Netherlands. g.krenning@med.umcg.nl

Abstract

Vascular tissue engineering aims at creating self-renewing, anti-thrombogenic, vascular grafts, which can be based on endothelial progenitor cells (EPC). EPC harbor essential features such as plasticity and longevity. Unfortunately, the archetype CD34(+) EPC is rare in peripheral blood. Monocytes, i.e. CD14(+) cells also have the ability to differentiate into endothelial-like cells and are by far more abundant in peripheral blood than are CD34(+) EPC. Therefore, CD14(+) cells would seem appropriate candidates for tissue engineering of small-diameter blood vessels. In this study, we investigated the differentiation of CD14(+) cells on three biodegradable biomaterials under angiogenic conditions. Morphological analyses, gene transcript analyses, endothelial marker (i.e. VE-Cadherin and eNOS) and macrophage marker (i.e. CD68 and CD163) expression analyses, revealed that a small fraction (15-25%) of cultured CD14(+) cells differentiated into macrophages after 21 days of culture. The majority of CD14(+) cells (>75%) differentiated into endothelial-like cells (ELC) on all biomaterials used. The expression of endothelial markers was similar to their expression on HUVEC. Since CD14(+) cells are present in high numbers in adult peripheral blood, easy to isolate and because they easily differentiate into ELC on biomaterials, we conclude that CD14(+) cells are a suitable cell source for progenitor-based vascular tissue engineering.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center