Send to

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 2006 Dec 19;103(51):19466-71. Epub 2006 Dec 12.

Phosphorylation of the ATP-binding loop directs oncogenicity of drug-resistant BCR-ABL mutants.

Author information

  • 1Howard Hughes Medical Institute, University of California, Los Angeles, CA 90095, USA.


The success of targeting kinases in cancer with small molecule inhibitors has been tempered by the emergence of drug-resistant kinase domain mutations. In patients with chronic myeloid leukemia treated with ABL inhibitors, BCR-ABL kinase domain mutations are the principal mechanism of relapse. Certain mutations are occasionally detected before treatment, suggesting increased fitness relative to wild-type p210 BCR-ABL. We evaluated the oncogenicity of eight kinase inhibitor-resistant BCR-ABL mutants and found a spectrum of potencies greater or less than p210. Although most fitness alterations correlate with changes in kinase activity, this is not the case with the T315I BCR-ABL mutation that confers clinical resistance to all currently approved ABL kinase inhibitors. Through global phosphoproteome analysis, we identified a unique phosphosubstrate signature associated with each drug-resistant allele, including a shift in phosphorylation of two tyrosines (Tyr253 and Tyr257) in the ATP binding loop (P-loop) of BCR-ABL when Thr315 is Ile or Ala. Mutational analysis of these tyrosines in the context of Thr315 mutations demonstrates that the identity of the gatekeeper residue impacts oncogenicity by altered P-loop phosphorylation. Therefore, mutations that confer clinical resistance to kinase inhibitors can substantially alter kinase function and confer novel biological properties that may impact disease progression.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center