Format

Send to

Choose Destination
See comment in PubMed Commons below
Nano Lett. 2006 Dec;6(12):2929-34.

Single p-type/intrinsic/n-type silicon nanowires as nanoscale avalanche photodetectors.

Author information

1
Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA.

Abstract

We report the controlled synthesis of axial modulation-doped p-type/intrinsic/n-type (p-i-n) silicon nanowires with uniform diameters and single-crystal structures. The p-i-n nanowires were grown in three sequential steps: in the presence of diborane for the p-type region, in the absence of chemical dopant sources for the middle segment, and in the presence of phosphine for the n-type region. The p-i-n nanowires were structurally characterized by transmission electron microscopy, and the spatially resolved electrical properties of individual nanowires were determined by electrostatic force and scanning gate microscopies. Temperature-dependent current-voltage measurements recorded from individual p-i-n devices show an increase in the breakdown voltage with temperature, characteristic of band-to-band impact ionization, or avalanche breakdown. Spatially resolved photocurrent measurements show that the largest photocurrent is generated at the intrinsic region located between the electrode contacts, with multiplication factors in excess of ca. 30, and demonstrate that single p-i-n nanowires function as avalanche photodiodes. Electron- and hole-initiated avalanche gain measurements performed by localized photoexcitation of the p-type and n-type regions yield multiplication factors of ca. 100 and 20, respectively. These results demonstrate the significant potential of single p-i-n nanowires as nanoscale avalanche photodetectors and open possible opportunities for studying impact ionization of electrons and holes within quasi-one-dimensional semiconductor systems.

PMID:
17163733
DOI:
10.1021/nl062314b
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Support Center