Format

Send to

Choose Destination
See comment in PubMed Commons below
J Cell Sci. 2006 Dec 15;119(Pt 24):5114-23.

Ex vivo treatment with nitric oxide increases mesoangioblast therapeutic efficacy in muscular dystrophy.

Author information

1
Stem Cell Research Institute, H San Raffaele Scientific Institute, 20132, Milan, Italy.

Abstract

Muscular dystrophies are characterized by primary wasting of skeletal muscle for which no satisfactory therapy is available. Studies in animal models have shown that stem cell-based therapies may improve the outcome of the disease, and that mesoangioblasts are promising stem cells in this respect. The efficacy of mesoangioblasts in yielding extensive muscle repair is, however, still limited. We found that mesoangioblasts treated with nitric oxide (NO) donors and injected intra-arterially in alpha-sarcoglycan-null dystrophic mice have a significantly enhanced ability to migrate to dystrophic muscles, to resist their apoptogenic environment and engraft into them, yielding a significant recovery of alpha-sarcolgycan expression. In vitro NO-treated mesoangioblasts displayed an enhanced chemotactic response to myotubes, cytokines and growth factors generated by the dystrophic muscle. In addition, they displayed an increased ability to fuse with myotubes and differentiating myoblasts and to survive when exposed to cytotoxic stimuli similar to those present in the dystrophic muscle. All the effects of NO were cyclic GMP-dependent since they were mimicked by treatment with the membrane permeant cyclic-GMP analogue 8-bromo-cGMP and prevented by inhibiting guanylate cyclase. We conclude that NO donors exert multiple beneficial effects on mesoangioblasts that may be used to increase their efficacy in cell therapy of muscular dystrophies.

PMID:
17158915
DOI:
10.1242/jcs.03300
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center