Evidence for strong dominance of proton-neutron correlations in nuclei

Phys Rev Lett. 2006 Oct 20;97(16):162504. doi: 10.1103/PhysRevLett.97.162504. Epub 2006 Oct 18.

Abstract

We analyze recent data from high-momentum-transfer (p, pp) and (p, ppn) reactions on carbon. For this analysis, the two-nucleon short-range correlation (NN-SRC) model for backward nucleon emission is extended to include the motion of the NN pair in the mean field. The model is found to describe major characteristics of the data. Our analysis demonstrates that the removal of a proton from the nucleus with initial momentum 275-550 MeV/c is 92(+8/-18) % of the time accompanied by the emission of a correlated neutron that carries momentum roughly equal and opposite to the initial proton momentum. This indicates that the probabilities of pp or nn SRCs in the nucleus are at least a factor of 6 smaller than that of pn SRCs. Our result is the first estimate of the isospin structure of NN-SRCs in nuclei, and may have important implication for modeling the equation of state of asymmetric nuclear matter.