Unexpected adsorption behavior of nonionic surfactants from glycol solvents

Langmuir. 2006 Dec 19;22(26):11187-92. doi: 10.1021/la0617356.

Abstract

Adsorption and interfacial properties of model methyl-capped nonionic surfactants C8E4OMe [C8H17O(C2H4O)4CH3] and C10E4OMe [C10H21O(C2H4O)4CH3] were studied in water and water/ethylene glycol mixtures as well as pure ethylene glycol. Critical micellar concentrations (cmc's), surface tensions, and surface excess were determined using surface tension (ST) and neutron reflection (NR) as a function of solvent type and surfactant tail length. The ST results show a strong dependence on solvent type in terms of cmc. The NR data were analyzed using a single-layer model for the adsorbed surfactant films. Surprisingly, the adsorption parameters obtained in both water and pure ethylene glycol were very similar, and variations in film thickness or area per molecule are negligible in respect of the uncertainties. Similarly, for C10E4OMe, estimates for the free energies of adsorption and micellization show only a weak solvent dependence. These results suggest that for such model nonionic surfactants dilute solution properties are dictated by solvophobicity, which is quite similar for this class of water, glycol, and water-glycol mixtures. More specifically, the nature of the adsorption layer appears to be hardly affected by the type of solvent subphase. The findings highlight the significance of solvophobicity and show that model nonionic surfactants can behave very similarly in hydrogen-bonding glycol solvents and water.