Format

Send to

Choose Destination
See comment in PubMed Commons below
Environ Sci Technol. 2006 Nov 15;40(22):6996-7004.

Simulation of metals transport and toxicity at a mine-impacted watershed: California Gulch, Colorado.

Author information

1
Department of Civil Engineering and Department of Fishery and Wildlife Biology, Colorado State University, Fort Collins, Colorado 80523, USA. mvelleux@hydroqual.com

Abstract

The transport and toxicity of metals at the California Gulch, Colorado mine-impacted watershed were simulated with a spatially distributed watershed model. Using a database of observations for the period 1984-2004, hydrology, sediment transport, and metals transport were simulated for a June 2003 calibration event and a September 2003 validation event. Simulated flow volumes were within approximately 10% of observed conditions. Observed ranges of total suspended solids, cadmium, copper, and zinc concentrations were also successfully simulated. The model was then used to simulate the potential impacts of a 1-in-100-year rainfall event. Driven by large flows and corresponding soil and sediment erosion for the 1-in-100-year event, estimated solids and metals export from the watershed is 10,000 metric tons for solids, 215 kg for Cu, 520 kg for Cu, and 15,300 kg for Zn. As expressed by the cumulative criterion unit (CCU) index, metals concentrations far exceed toxic effects thresholds, suggesting a high probability of toxic effects downstream of the gulch. More detailed Zn source analyses suggest that much of the Zn exported from the gulch originates from slag piles adjacent to the lower gulch floodplain and an old mining site located near the head of the lower gulch.

PMID:
17154007
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Support Center