Format

Send to

Choose Destination
See comment in PubMed Commons below
BMC Neurosci. 2006 Dec 5;7:80.

Wild-type huntingtin ameliorates striatal neuronal atrophy but does not prevent other abnormalities in the YAC128 mouse model of Huntington disease.

Author information

1
Department of Medical Genetics and Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, V5Z 4H4, BC, Canada. jeremy@cmmt.ubc.ca <jeremy@cmmt.ubc.ca>

Abstract

BACKGROUND:

Huntington disease (HD) is an adult onset neurodegenerative disorder caused by a polyglutamine expansion in the huntingtin (htt) protein. Htt function is essential for embryonic survival as well as normal function during the postnatal period. In addition to having roles in transcription and transport, recent evidence demonstrates that wild-type htt is neuroprotective in vivo. To determine whether treatment with wild-type htt would be beneficial in HD, we crossed the YAC128 mouse model of HD with mice that over-express wild-type htt (YAC18 mice) to generate YAC128 mice that over-express wild-type htt (YAC18/128 mice).

RESULTS:

YAC18/128 mice were found to express mutant htt at the same level as YAC128 mice and wild-type htt at the same level as YAC18 mice. YAC18/128 mice show no significant behavioural improvement compared to YAC128 mice in the rotarod test of motor coordination or in an automated open field test. In the brain, YAC18/128 mice show no significant improvement in striatal volume, striatal neuronal numbers or striatal DARPP-32 expression compared to YAC128 mice. In contrast, striatal neuronal cross-sectional area showed significant improvement in YAC18/128 mice compared to YAC128 mice.

CONCLUSION:

While the over-expression of wild-type htt results in a mild improvement in striatal neuropathology in YAC128 mice, our findings suggest that treatment with wild-type htt may not be sufficient to ameliorate the symptoms of HD in this model.

PMID:
17147801
PMCID:
PMC1762017
DOI:
10.1186/1471-2202-7-80
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for BioMed Central Icon for PubMed Central
    Loading ...
    Support Center