Format

Send to

Choose Destination
See comment in PubMed Commons below
Neurosci Res. 2007 Feb;57(2):306-13. Epub 2006 Dec 4.

Selective cognitive dysfunction in mice lacking histamine H1 and H2 receptors.

Author information

1
Department of Pharmacology, Tohoku University School of Medicine, 2-1 Seiryo-Machi, Sendai, Japan.

Abstract

Previous pharmacological experiments provide conflicting findings that describe both facilitatory and inhibitory effects of neuronal histamine on learning and memory. Here, we examined learning and memory and synaptic plasticity in mice with a null mutation of gene coding histamine H1 or H2 receptor in order to clarify the role of these receptors in learning and memory processes. Learning and memory were evaluated by several behavioral tasks including object recognition, Barnes maze and fear conditioning. These behavioral tasks are highly dependent on the function of prefrontal cortex, hippocampus or amygdala. Object recognition and Barnes maze performance were significantly impaired in both H1 receptor gene knockout (H1KO) and H2 receptor gene knockout (H2KO) mice when compared to the respective wild-type (WT) mice. Conversely, both H1KO and H2KO mice showed better auditory and contextual freezing acquisition than their respective WT mice. Furthermore, we also examined long-term potentiation (LTP) in the CA1 area of hippocampus in H1KO and H2KO mice and their respective WT mice. LTP in the CA1 area of hippocampus was significantly reduced in both H1KO and H2KO mice when compared with their respective WT mice. In conclusion, our results demonstrate that both H1 and H2 receptors are involved in learning and memory processes for which the frontal cortex, amygdala and hippocampus interact.

PMID:
17145090
DOI:
10.1016/j.neures.2006.10.020
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center