Send to

Choose Destination
Biomaterials. 2007 Mar;28(7):1423-33. Epub 2006 Dec 1.

Bio-functional micelles self-assembled from a folate-conjugated block copolymer for targeted intracellular delivery of anticancer drugs.

Author information

Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, #04-01, Singapore 138669, Singapore.


In this study, a block copolymer, poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide-co-2-aminoethyl methacrylate)-b-poly(10-undecenoic acid) (P(NIPAAm-co-DMAAm-co-AMA)-b-PUA) was synthesized, and folic acid was conjugated to the hydrophilic block through the amine group in AMA. This polymer was self-assembled into micelles, which exhibited pH-induced temperature sensitivity. They were smaller in size, and possessed a better-defined core-shell structure as well as more stable hydrophobic core than the random copolymer P(NIPAAm-co-DMAAm-co-UA), and provided a shell with folate molecules. An anti-cancer drug, doxorubicin (DOX) was encapsulated into the micelles. The mean diameter of the blank and DOX-loaded micelles was less than 100 nm. DOX release was pH-dependent, being faster at low pH (endosomes/lysosomes). Therefore, DOX was readily released from the micelles into the nucleus after being taken up. More importantly, IC50 of DOX-loaded micelles with folate against folate receptor-expressing 4T1 and KB cells was much lower than that of the DOX-loaded micelles without folate (3.8 vs. 7.6 mg/L for 4T1 cells and 1.2 vs. 3.0mg/L for KB cells). In vivo experiments conducted in a 4T1 mouse breast cancer model demonstrated that DOX-loaded micelles had a longer blood circulation time than free DOX (t(1/2): 30 min and 140 min, respectively). In addition, the micelles delivered an increased amount of DOX to the tumor when compared to free DOX. These bio-functional micelles may make a promising carrier to transport anticancer drugs specifically to tumor cells and release the drug molecules inside the cells to the cytosols for improved chemotherapy.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center