Send to

Choose Destination
Dev Cell. 2006 Dec;11(6):859-71.

Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1.

Author information

Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology, Cambridge, Massachusetts 02141, USA.


The mTOR kinase controls cell growth, proliferation, and survival through two distinct multiprotein complexes, mTORC1 and mTORC2. mTOR and mLST8 are in both complexes, while raptor and rictor are part of only mTORC1 and mTORC2, respectively. To investigate mTORC1 and mTORC2 function in vivo, we generated mice deficient for raptor, rictor, or mLST8. Like mice null for mTOR, those lacking raptor die early in development. However, mLST8 null embryos survive until e10.5 and resemble embryos missing rictor. mLST8 is necessary to maintain the rictor-mTOR, but not the raptor-mTOR, interaction, and both mLST8 and rictor are required for the hydrophobic motif phosphorylation of Akt/PKB and PKCalpha, but not S6K1. Furthermore, insulin signaling to FOXO3, but not to TSC2 or GSK3beta, requires mLST8 and rictor. Thus, mTORC1 function is essential in early development, mLST8 is required only for mTORC2 signaling, and mTORC2 is a necessary component of the Akt-FOXO and PKCalpha pathways.

[Indexed for MEDLINE]
Free full text

Publication types, MeSH terms, Substances, Grant support

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center