Send to

Choose Destination
See comment in PubMed Commons below
Biotechnol Prog. 2006 Nov-Dec;22(6):1541-6.

Metabolic engineering and characterization of phaC1 and phaC2 genes from Pseudomonas putida KCTC1639 for overproduction of medium-chain-length polyhydroxyalkanoate.

Author information

Department of Genetic Engineering, College of Natural Sciences, Kyungpook National University, Daegu 702-701, S. Korea.


Two PHA synthase phaC1 and phaC2 genes cloned from the new strain Pseudomonas putida KCTC1639 were metabolically engineered for the overproduction of medium-chain-length polyhydroxyalkanoate (mcl-PHA). The overexpressed phaC1 and phaC2 genes in P. putida KCTC1639 were compared in terms of the biosynthesis of mcl-PHA, fatty acid assimilation, distribution of 3-hydroxylacyl monomer units, granular morphology, and thermophysical properties of the accumulated mcl-PHA. The biosynthesis of mcl-PHA was enhanced only by the overexpressed phaC1 gene up to 2.86-fold, in contrast, the phaC2 gene did not activate the biosynthesis of mcl-PHA. The overexpressed phaC1 gene tended to form enlarged, high molecular weight, and lower crystalline mcl-PHA granules, whereas the amplified phaC2 gene induced the fragmentation of mcl-PHA into a few small-sized granules. The transformant P. putida KCTC1639 overexpressing the phaC1 gene encoding PHA synthase I was cultivated by pH-stat fed-batch cultivation, and the concentration and content of mcl-PHA increased up to 8.91 g L-1 and 70.5%, respectively.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons


    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Support Center