Send to

Choose Destination
Biochem Pharmacol. 2007 Feb 1;73(3):394-404. Epub 2006 Oct 20.

Inhibition of the intestinal absorption of bile acids using cationic derivatives: mechanism and repercussions.

Author information

Department of Physiology and Pharmacology, Campus Miguel de Unamuno, University of Salamanca, 37007 Salamanca, Spain.


To pharmacologically interrupt bile acid enterohepatic circulation, two compounds named BAPA-3 and BAPA-6, with a steroid structure and 1 or 2 positive charges, were obtained by conjugation of N-(3-aminopropyl)-1,3-propanediamine with one or two moieties of glycocholic acid (GC). Both BAPA-3 and BAPA-6 inhibited Na+-dependent taurocholate (TC) uptake by Xenopus laevis oocytes expressing rat Asbt, with Ki values of 28 and 16 microM, respectively. BAPA-3 reduced Vmax without affecting Km. In contrast, BAPA-6 increased Km, with no effect on Vmax. Uptake of [14C]-GC by the last 10 cm of the rat ileum, perfused in situ over 60 min, was inhibited to a similar extent by unlabeled GC, BAPA-3 and BAPA-6. However, the intestinal absorption of these compounds was lower (BAPA-6) or much lower (BAPA-3) than that of GC. When administered orally to mice, both compounds (BAPA-3>BAPA-6) reduced the bile acid pool size, which was accompanied by up-regulation of hepatic Cyp7a1 and Hmgcr and intestinal Ostalpha/Ostbeta. A tendency towards a decreased expression of hepatic Ntcp and an enhanced expression of intestinal Asbt was also observed. Serum biochemical parameters were not affected by treatment with these compounds, except for a moderate increase in serum triglyceride concentrations. In sum, our results suggest that these compounds, in particular BAPA-3, are potentially useful tools for inhibiting the intestinal absorption of bile acids in a non-competitive manner.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center