Send to

Choose Destination
J Gene Med. 2006 Dec;8(12):1407-15.

A branched histidine/lysine peptide, H2K4b, in complex with plasmids encoding antitumor proteins inhibits tumor xenografts.

Author information

Department of Pathology, University of Maryland Baltimore, MSTF Building, 10 South Pine Street, Baltimore, MD 21201, USA.



In this study we investigated whether a particular branched HK polymer, H2K4b, was an effective in vivo carrier of plasmids expressing the antiangiogenic kringle 1-5 or the tumor suppressor p53.


H2K4b was synthesized on a solid-phase peptide synthesizer. Distribution, optimization and time course studies were done in tumor-bearing nude mice by systemically administering H2K4b in complex with a luciferase-expressing plasmid. We examined the amount of tumor angiogenesis in C6 with MDA-MB-435 xenografts utilizing the carmine dye. The ability of H2K4b to carry luciferase plasmids to different tissues was compared with several liposomal carriers. Medium from cells transfected with mKr1-5 was tested for its capacity to inhibit angiogenesis with an in vivo Matrigel assay. We then determined if systemically delivered H2K4b in complex with plasmid encoding mKr1-5 inhibited tumor growth; we also compared the antitumor activity of HK polyplexes containing hKr1-5, mKr1-5, and p53 plasmids.


H2K4b carried the luciferase-expressing plasmid in order of descending efficacy to these tissues: lung, spleen, tumor, and liver. Compared to DOTAP-containing liposomes, H2K4b was a more effective carrier of a luciferase-containing plasmid to extrapulmonary tissues. We then determined that mKr1-5 in complex with H2K4b reduced MDA-MB-435 tumor growth by approximately 50% compared to the control group (P < 0.01). Similarly, H2K4b/mKr1-5 polyplexes reduced the growth of C6 xenografts. In MDA-MB-435 xenografts, p53- and Kr1-5-expressing plasmids in complex with H2K4b had comparable antitumor activity.


H2K4b demonstrates potential as a carrier of plasmids encoding antiangiogenic and/or tumor suppressor proteins in a tumor-bearing mouse model.

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center