Format

Send to

Choose Destination
See comment in PubMed Commons below
Diabetes. 2006 Dec;55(12):3446-54.

Insulin treatment in patients with type 1 diabetes induces upregulation of regulatory T-cell markers in peripheral blood mononuclear cells stimulated with insulin in vitro.

Author information

1
National Public Health Institute, Department of Viral Diseases and Immunology, Laboratory for Immunology, Mannerheimintie 166, 00300 Helsinki, Finland. minna.tiittanen@ktl.fi

Abstract

Patients with type 1 diabetes are treated with daily injections of human insulin, an autoantigen expressed in thymus. Natural CD4(+)CD25(high) regulatory T-cells are derived from thymus, and accordingly human insulin-specific regulatory T-cells should exist. We had a chance to study peripheral blood mononuclear cells (PBMCs) from children with type 1 diabetes both before and after starting insulin treatment, and thus we could analyze the effects of insulin treatment on regulatory T-cells in children with type 1 diabetes. PBMCs were stimulated for 72 h with bovine/human insulin. The mRNA expression of regulatory T-cell markers (transforming growth factor-beta, Foxp3, cytotoxic T-lymphocyte antigen-4 [CTLA-4], and inducible co-stimulator [ICOS]) or cytokines (gamma-interferon [IFN-gamma], interleukin [IL]-5, IL-4) was measured by quantitative RT-PCR. The secretion of IFN-gamma, IL-2, IL-4, IL-5, and IL-10 was also studied. The expression of Foxp3, CTLA-4, and ICOS mRNAs in PBMCs stimulated with bovine or human insulin was higher in patients on insulin treatment than in patients studied before starting insulin treatment. The insulin-induced Foxp3 protein expression in CD4(+)CD25(high) cells was detectable in flow cytometry. No differences were seen in cytokine activation between the patient groups. Insulin stimulation in vitro induced increased expression of regulatory T-cell markers, Foxp3, CTLA-4, and ICOS only in patients treated with insulin, suggesting that treatment with human insulin activates insulin-specific regulatory T-cells in children with newly diagnosed type 1 diabetes. This effect of the exogenous autoantigen could explain the difficulties to detect in vitro T-cell proliferation responses to insulin in newly diagnosed patients. Furthermore, autoantigen treatment-induced activation of regulatory T-cells may contribute to the clinical remission of the disease.

PMID:
17130491
DOI:
10.2337/db06-0132
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center