Send to

Choose Destination
See comment in PubMed Commons below
Biochim Biophys Acta. 2007 Feb;1768(2):179-97. Epub 2006 Oct 7.

Deciphering the mechanisms of intestinal imino (and amino) acid transport: the redemption of SLC36A1.

Author information

Epithelial Research Group, Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Framlington Place, University of Newcastle upon Tyne, Newcastle upon Tyne NE2 4HH, UK.


The absorption of zwitterionic imino and amino acids, and related drugs, is an essential function of the small intestinal epithelium. This review focuses on the physiological roles of transporters recently identified at the molecular level, in particular SLC36A1, by identifying how they relate to the classical epithelial imino and amino acid transporters characterised in mammalian small intestine in the 1960s-1990s. SLC36A1 transports a number of D- and L-imino and amino acids, beta- and gamma-amino acids and orally-active neuromodulatory and antibacterial agents. SLC36A1 (or PAT1) functions as a proton-coupled imino and amino acid symporter in cooperation with the Na+/H+ exchanger NHE3 (SLC9A3) to produce the imino acid carrier identified in rat small intestine in the 1960s but subsequently ignored because of confusion with the IMINO transporter. However, it is the sodium/imino and amino acid cotransporter SLC6A20 which corresponds to the betaine carrier (identified in hamster, 1960s) and IMINO transporter (identified in rabbit and guinea pig, 1980s). This review summarises evidence for expression of SLC36A1 and SLC6A20 in human small intestine, highlights the differences in functional characteristics of the imino acid carrier and IMINO transporter, and explains the confusion surrounding these two distinct transport systems.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center