Format

Send to

Choose Destination
See comment in PubMed Commons below
Planta. 2007 Jan;225(2):269-76. Epub 2006 Nov 18.

Functional diversity of tocochromanols in plants.

Author information

1
Department of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany. Doermann@mpimp-golm.mpg.de

Abstract

Tocochromanols encompass a group of compounds with vitamin E activity essential for human nutrition. They accumulate in photooxidative organisms, e.g. in some algae and in plants, where they localize to thylakoid membranes and plastoglobules of chloroplasts. Tocochromanols contain a polar chromanol head group with a long isoprenoid side chain. Depending on the nature of the isoprenoid chain, tocopherols (containing a phytyl chain) or tocotrienols (geranylgeranyl chain) can be distinguished in plants. The tocochromanol biosynthetic pathway has been studied in Arabidopsis and Synechocystis in recent years, and the respective mutants and genes were isolated. Mutant characterization revealed that tocopherol protects lipids in photosynthetic membranes and in seeds against oxidative stress. In addition to its antioxidant characteristics, tocopherol was shown be involved in non-antioxidant functions such as primary carbohydrate metabolism. A considerable proportion of tocopherol is synthesized from free phytol suggesting that excess amounts of phytol released from chlorophyll breakdown during stress or senescence might be deposited in the form of tocopherol in chloroplasts.

PMID:
17115182
DOI:
10.1007/s00425-006-0438-2
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer
    Loading ...
    Support Center