Format

Send to

Choose Destination
Gut. 2007 Apr;56(4):518-23. Epub 2006 Nov 17.

Structural adaptations in the murine colon microcirculation associated with hapten-induced inflammation.

Author information

1
Laboratory of Immunophysiology, Brigham & Women's Hospital, Boston, Massachusetts 02115, USA.

Abstract

BACKGROUND:

Blood flowing across the vascular endothelium creates wall shear stress, dependent on velocity of flow and vessel geometry, that tends to disrupt lymphocyte-endothelial cell adhesion.

OBJECTIVE:

The microcirculation in a murine model of acute colitis was investigated to identify structural adaptations during acute colitis that may facilitate transmigration.

METHODS:

In 2,4,6-trinitrobenzenesulphonic acid-induced acute colitis, the infiltrating cells and colonic microcirculation was investigated by cellular topographic mapping, corrosion casting and three-dimensional scanning electron microscopy (SEM). Colonic blood velocimetry was performed using intravital microscopy.

RESULTS:

Clinical and histological parameters suggested a peak inflammatory response at 96 h (p<0.001). The infiltrating cells were spatially related to the mucosal capillary plexus by three-dimensional topographic mapping (p<0.001). In normal mice, corrosion casting and three-dimensional SEM showed a polygonal mucosal plexus supplied by ascending arteries and descending veins. After 2,4,6-trinitrobenzenesulphonic acid stimulation, three-dimensional SEM showed preserved branch angles (p = 0.52) and nominal vessel lengths (p = 0.93), but a significantly dilated mucosal capillary plexus (p<0.001). Intravital microscopy of the mucosal plexus showed a greater than twofold decrease in the velocity of flow (p<0.001).

CONCLUSIONS:

The demonstrable slowing of the velocity of flow despite an increase in volumetric flow suggests that these microvascular adaptations create conditions suitable for leucocyte adhesion and transmigration.

PMID:
17114297
PMCID:
PMC1856840
DOI:
10.1136/gut.2006.101824
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center