Send to

Choose Destination
See comment in PubMed Commons below
J Hazard Mater. 2007 Jun 1;144(1-2):340-7. Epub 2006 Oct 15.

The influence of different temperature programmes on the bioremediation of polycyclic aromatic hydrocarbons (PAHs) in a coal-tar contaminated soil by in-vessel composting.

Author information

Imperial College London, Wye campus, Wye, Ashford, TN25 5AH, United Kingdom.


The biodegradation of 16 US. EPA-listed polycyclic aromatic hydrocarbons (sigma PAHs), with accompanying humification and microbial community structure changes during simulated in-vessel composting-bioremediation of an aged coal-tar-contaminated soil amended with green waste were studied over 56 days. The experimental design compared one constant temperature profile (TC=38 degrees C) with three variable temperature profiles (TP1, TP2 and TP3), including treatment at 70 degrees C to comply with regulatory requirements. Greatest sigma PAHs removal (75.4+/-0.1%; k(1)=0.026 day(-1), R(2)=0.98) occurred at TC=38 degrees C compared to all variable temperature profiles TP1 (62.1+/-11.0%; k(1)=0.016 day(-1), R(2)=0.93), TP2 (71.8+/-8.2%; k(1)=0.021 day(-1), R(2)=0.95) and TP3 (45.3+/-9.7%; k(1)=0.010 day(-1), R(2)=0.91). This study proved that using thermophilic temperatures (70 degrees C) towards the end of in-vessel composting processes (TP2) resulted in greater sigma PAHs removal than using other variable temperature profiles (TP1, TP3), as long as the increase was stepwise via an intermediate temperature (55 degrees C). Phospholipid fatty acid (PLFA) signatures indicated that use of thermophilic temperatures towards the end of the in-vessel composting-bioremediation (TP2) resulted in a higher fungal to bacterial PLFA ratio and a lower Gram-positive to Gram-negative (G(+)/G(-)) bacterial ratio. Fluorescence excitation-emission matrix (EEM) showed the presence of peaks typical of humic-like (Ex/Em wavelength pair approximately 340/460 nm) and fulvic-acid-like (Ex/Em wavelength pair approximately 245/460 nm) substances, indicating mineralization and/or maturation of the compost. Varying the temperature during in-vessel composting to comply with regulatory requirements for pathogen control, promoted contaminant biodegradation, microbial activity and compost maturation.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons


    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center