Format

Send to

Choose Destination
See comment in PubMed Commons below
J Chromatogr A. 2007 Jan 5;1138(1-2):231-43. Epub 2006 Nov 17.

Simultaneous analysis of polychlorinated biphenyls and organochlorine pesticides in water by headspace solid-phase microextraction with gas chromatography-tandem mass spectrometry.

Author information

1
Laboratoire de Chimie Analytique et Environnement, 05/UR/12-03, Faculté des Sciences de Bizerte, 7021 Zarzouna, Tunisia.

Abstract

Headspace solid-phase microextraction combined with gas chromatography-ion trap tandem mass spectrometry (HS-SPME-GC-ITMS-MS) method has been developed and studied for the simultaneous determination of 15 organochlorine pesticides (OCPs) and 20 polychlorinated biphenyls (PCBs) in aqueous samples. To perform the HS-SPME polydimethylsiloxane (PDMS) (7, 30 and 100 microm film thickness) and polydimethylsiloxane-divinylbenzene (PDMS-DVB) fibers were initially compared on the basis of their absorption capacities for the selected compounds, and PDMS 100 microm film thickness was selected to accomplish the rests of essays. The influence of various parameters on OCPs and PCBs extraction efficiency by HS-SPME was thoroughly studied using GC-electron capture detector (ECD). Parameters such as collision induced dissociation (CID) resonant excitation amplitude and RF storage level were optimized to increase specificity and sensibility for ITMS-MS analysis. The performance of proposed HS-SPME-GC-ITMS-MS methodology with respect to linearity, reproducibility and limit of detection (LOD) was evaluated by water spiked with target compounds. The linear range of most compounds was found to be between 0.01 and 1 ng mL(-1) and the limits of detection were between 0.4 and 26 pg mL(-1). The reproducibility of the method (n = 6), expressed as relative standard deviation (RSD), was between 5 and 21%. Finally, developed procedure was applied to determine selected OCPs and PCBs in river water samples in concentration below 0.1 ng mL(-1) can be easily carried out with ultra-selectivity and precision.

PMID:
17113095
DOI:
10.1016/j.chroma.2006.10.064
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center