Send to

Choose Destination
Biol Cybern. 2007 Mar;96(3):323-40. Epub 2006 Nov 15.

Hexapod Walking: an expansion to Walknet dealing with leg amputations and force oscillations.

Author information

Department of Biological Cybernetics and Theoretical Biology, University of Bielefeld, P.O. Box 100131, 33501 Bielefeld, Germany.


The control of the legs of a walking hexapod is a complex problem as the legs have three joints each, resulting in a total of 18 degrees of freedom. We addressed this problem using a decentralized architecture termed Walknet, which consists of peripheral pattern generators being coordinated through influences acting mainly between neighbouring legs. Both, the coordinating influences and the local control modules (each acting only on one leg), are biologically inspired. This investigation shows that it is possible to adapt this approach to account for additional biological data by (1) changing the structure of the selector net in a biological plausible way (including force as an analog variable), (2) introducing a biologically motivated coordination influence for coactivation between legs and (3) adding a hypothetical influence between hind and front legs. This network of controllers has been tested using a dynamic simulation. It is able to describe (a) the behaviour of animals walking with one or two legs being amputated and (b) force oscillations that occur in a specific experimental situation, the standing legs of a walking animal.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Springer
Loading ...
Support Center