Methamphetamine induces autophagy and apoptosis in a mesencephalic dopaminergic neuronal culture model: role of cathepsin-D in methamphetamine-induced apoptotic cell death

Ann N Y Acad Sci. 2006 Aug:1074:234-44. doi: 10.1196/annals.1369.022.

Abstract

Autophagy is a phylogenetically conserved process that plays a critical role in the degradation of oxidatively damaged proteins and organelle turnover. The role of oxidative stress and apoptosis in methamphetamine (METH)-induced neurotoxicity is well known; however, the potential contribution of autophagy to METH-induced oxidative damage in dopaminergic neuronal systems remains unclear. The goals of the present article were twofold: (a) to develop an in vitro dopaminergic cell culture model to study cellular and molecular mechanisms underlying METH-induced autophagy and apoptosis, and (b) to determine whether lysosomal protease cathepsin-D activation, resulting from the loss of lysosomal membrane integrity, contributes to METH-induced apoptosis. To accomplish these goals, we characterized morphological and biochemical changes in an immortalized mesencephalic dopaminergic neuronal cell line (N27 cells) following treatment with METH. Exposure of METH (2 mM) to N27 cells resulted in the appearance of cytoplasmic vacuolar structures reminiscent of autophagic vacuoles within 3 h. In order to ascertain the identity of the vacuolar structures that are formed following METH exposure, immunohistochemical staining for markers of autophagy were performed. LAMP 2, a classical marker of autophagolysosomes, revealed an extensive punctuate pattern of distribution on the vacuolar membrane surface, with exclusive localization in the cytoplasm. Additionally, using DNA fragmentation analysis we showed a dose-dependent increase in fragmented DNA in METH treated N27 cells. Since METH-induced autophagy preceded DNA fragmentation, we tested whether dysfunction of the autophagolysosomal system contributes to nuclear damage. Immunofluorescence studies with cathepsin-d demonstrated a granular pattern of staining in untreated cells, whereas an increased cathepsin- D immunoreactivity with a globular pattern of staining was observed in METH-treated cells. Nevertheless, blockade of cathepsin-D activation by pepstatin-A, cathepsin-D inhibitor, failed to alter METH-induced DNA fragmentation. Collectively, these results demonstrate that N27 dopaminergic neuronal cell model may serve as an excellent in vitro model to study the mechanisms of METH-induced autophagy and apoptosis. Furthermore, it is less likely that cathepsin-D may serve as a trigger for the induction of apoptosis subsequent to exposure of N27 dopaminergic neuronal cells to METH.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Apoptosis
  • Autophagy*
  • Cathepsin D / metabolism
  • Cathepsin D / physiology*
  • Cell Culture Techniques
  • Cell Line
  • DNA Damage
  • Dopamine Agents / pharmacology*
  • Intracellular Membranes / drug effects
  • Intranuclear Inclusion Bodies / metabolism
  • Lysosomes / drug effects
  • Mesencephalon / cytology
  • Mesencephalon / drug effects*
  • Methamphetamine / pharmacology*
  • Models, Biological
  • Neurons / drug effects*
  • Neurons / metabolism
  • Permeability
  • Rats

Substances

  • Dopamine Agents
  • Methamphetamine
  • Cathepsin D