Send to

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 2006 Nov 21;103(47):17632-7. Epub 2006 Nov 13.

Transposon insertion site profiling chip (TIP-chip).

Author information

  • 1High Throughput Biology Center and Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.


Mobile elements are important components of our genomes, with diverse and significant effects on phenotype. Not only can transposons inactivate genes by direct disruption and shuffle the genome through recombination, they can also alter gene expression subtly or powerfully. Currently active transposons are highly polymorphic in host populations, including, among hundreds of others, L1 and Alu elements in humans and Ty1 elements in yeast. For this reason, we wished to develop a simple genome-wide method for identifying all transposons in any given sample. We have designed a transposon insertion site profiling chip (TIP-chip), a microarray intended for use as a high-throughput technique for mapping transposon insertions. By selectively amplifying transposon flanking regions and hybridizing them to the array, we can locate all transposons present in a sample. We have tested the TIP-chip extensively to map Ty1 retrotransposon insertions in yeast and have achieved excellent results in two laboratory strains as well as in evolved Ty1 high-copy strains. We are able to identify all of the theoretically detectable transposons in the FY2 lab strain, with essentially no false positives. In addition, we mapped many new transposon copies in the high-copy Ty1 strain and determined its Ty1 insertion pattern.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center