Format

Send to

Choose Destination
J Biol Chem. 2007 Jan 5;282(1):183-93. Epub 2006 Nov 12.

Identification of a region of troponin I important in signaling cross-bridge-dependent activation of cardiac myofilaments.

Author information

1
Center for Cardiovascular Research, Department of Physiology and Biophysics, University of Illinois College of Medicine, Chicago, Illinois 60612, USA.

Abstract

Force generating strong cross-bridges are required to fully activate cardiac thin filaments, but the molecular signaling mechanism remains unclear. Evidence demonstrating differential extents of cross-bridge-dependent activation of force, especially at acidic pH, in myofilaments in which slow skeletal troponin I (ssTnI) replaced cardiac TnI (cTnI) indicates the significance of a His in ssTnI that is an homologous Ala in cTnI. We compared cross-bridge-dependent activation in myofilaments regulated by cTnI, ssTnI, cTnI(A66H), or ssTnI(H34A). A drop from pH 7.0 to 6.5 induced enhanced cross-bridge-dependent activation in cTnI myofilaments, but depressed activation in cTnI(A66H) myofilaments. This same drop in pH depressed cross-bridge-dependent activation in both ssTnI myofilaments and ssTnI(H34A) myofilaments. Compared with controls, cTnI(A66H) myofilaments were desensitized to Ca(2+), whereas there was no difference in the Ca(2+)-force relationship between ssTnI and ssTnI(H34A) myofilaments. The mutations in cTnI and ssTnI did not affect Ca(2+) dissociation rates from cTnC at pH 7.0 or 6.5. However, at pH 6.5, cTnI(A66H) had lower affinity for cTnT than cTnI. We also probed cross-bridge-dependent activation in myofilaments regulated by cTnI(Q56A). Myofilaments containing cTnI(Q56A) demonstrated cross-bridge-dependent activation that was similar to controls containing cTnI at pH 7.0 and an enhanced cross-bridge-dependent activation at pH 6.5. We conclude that a localized N-terminal region of TnI comprised of amino acids 33-80, which interacts with C-terminal regions of cTnC and cTnT, is of particular significance in transducing signaling of thin filament activation by strong cross-bridges.

PMID:
17099250
DOI:
10.1074/jbc.M512337200
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for HighWire
Loading ...
Support Center