Format

Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2007 Jan 5;282(1):132-41. Epub 2006 Nov 8.

Picornavirus internal ribosome entry site elements can stimulate translation of upstream genes.

Author information

1
Institute of Biochemistry, Faculty of Medicine, Justus-Liebig-University Giessen, Friedrichstrasse 24, 35392 Giessen, Germany.

Abstract

Certain viral and cellular mRNAs initiate translation cap-independently at internal ribosome entry site (IRES) elements. Picornavirus IRES elements are widely used in dicistronic or multicistronic vectors in gene therapy, virus replicon systems, and analysis of IRES function. In such vectors, expression of the upstream gene often serves as internal control to standardize the readings of IRES-driven downstream reporter activity. Picornaviral IRES elements translate optimally at up to 120 mM K(+) concentration, whereas genes used as upstream reporters usually have lower salt optima when present in monocistronic mRNAs. However, here we show that such reporter genes are efficiently translated at higher K(+) concentrations when placed upstream of a functional picornavirus IRES. This translation enhancement occurs in cis, is independent of the nature of the first reporter and of second reporter translation, and is conferred by the IRESs of picornaviruses but not of hepatitis C virus. A defective picornavirus IRES with a deletion killing IRES activity but leaving the binding site for initiation factor eIF4G intact retains translation enhancement activity. Translation enhancement on a capped mRNA is disabled by m(7)GDP. In addition, the C-terminal fragment of eIF4G can confer translation enhancement also on uncapped mRNA. We conclude that whenever eIF4F has been captured to a dicistronic mRNA by binding to a picornavirus IRES via its eIF4G moiety, it can be provided in cis to the 5'-end of the RNA and there stimulate translation initiation, either by binding to the cap nucleotide using its eIF4E moiety or by binding to the RNA cap-independently using its eIF4G moiety.

PMID:
17095505
DOI:
10.1074/jbc.M608750200
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center