Send to

Choose Destination
See comment in PubMed Commons below
J Neurophysiol. 2007 Jan;97(1):572-8. Epub 2006 Nov 8.

Differential effects of hypothermia on early and late epileptiform events after severe hypoxia in preterm fetal sheep.

Author information

  • 1Department of Physiology, Faculty of Medicine and Health Science, The University of Auckland, Private Bag 92019, Auckland, New Zealand.


Moderate cerebral hypothermia is consistently neuroprotective after experimental hypoxia-ischemia; however, its mechanisms remain poorly defined. Using a model of complete umbilical cord occlusion for 25 min in 0.7 gestation fetal sheep, we examined the effects of cerebral hypothermia (fetal extradural temperature reduced from 39.5 +/- 0.2 degrees C to <34 degrees C; mean +/- SD), from 90 min to 70 h after the end of the insult, on postocclusion epileptiform activity. In the first 6 h after the end of occlusion, fetal electroencephalographic (EEG) activity was abnormal with a mixture of fast and slow epileptiform transients superimposed on a suppressed background; seizures started a mean of 8 h after occlusion. There was a close correlation between numbers of these EEG transients and subsequent neuronal loss in the striatum after 3 days recovery (r(2) = 0.65, P = 0.008). Hypothermia was associated with a marked reduction in numbers of epileptiform transients in the first 6 h, reduced amplitude of seizures, and reduced striatal neuronal loss. In conclusion, neuroprotection with delayed, prolonged head cooling after a severe asphyxial insult in the preterm fetus was associated with potent, specific suppression of epileptiform transients in the early recovery phase but not of numbers of delayed seizures.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center