Format

Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2007 Feb 2;282(5):3122-33. Epub 2006 Nov 6.

A comprehensive structure-function map of the intracellular surface of the human C5a receptor. II. Elucidation of G protein specificity determinants.

Author information

  • 1Department of Medicine and Molecular Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.

Abstract

Within any given cell many G protein-coupled receptors are expressed in the presence of multiple G proteins, yet most receptors couple to a specific subset of G proteins to elicit their programmed response. Numerous studies demonstrate that the carboxyl-terminal five amino acids of the Galpha subunits are a major determinant of specificity, however the receptor determinants of specificity are less clear. We have used a collection of 133 functional mutants of the C5a receptor obtained in a mutagenesis screen targeting the intracellular loops and the carboxyl terminus (Matsumoto, M. L., Narzinski, K., Kiser, P. D., Nikiforovich, G. V., and Baranski, T. J. (2007) J. Biol. Chem. 282, 3105-3121) to investigate how specificity is encoded. Each mutant, originally selected for its ability to signal through a nearly full-length Galpha(i) in yeast, was tested to see whether it could activate three versions of chimeric Galpha subunits consisting of Gpa1 fused to the carboxyl-terminal five amino acids of Galpha(i), Galpha(q), or Galpha(s) in yeast. Surprisingly the carboxyl-terminal tail of the C5a receptor is the most important specificity determinant in that nearly all mutants in this region showed a gain in coupling to Galpha(q) and/or Galpha(s). More than half of the receptors mutated in the second intracellular loop also demonstrated broadened G protein coupling. Given a lack of selective advantage for this broadened signaling in the initial screen, we propose a model in which the carboxyl-terminal tail acts together with the intracellular loops to generate a specificity filter for receptor-G protein interactions that functions primarily to restrict access of incorrect G proteins to the receptor.

PMID:
17090530
DOI:
10.1074/jbc.M607683200
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center