Format

Send to

Choose Destination
Proc Natl Acad Sci U S A. 2006 Nov 14;103(46):17507-12. Epub 2006 Nov 6.

Local field potential reflects perceptual suppression in monkey visual cortex.

Author information

1
Max Planck Institute for Biological Cybernetics, Spemannstrasse 38, 72076 Tübingen, Germany.

Abstract

Neurophysiological and functional imaging experiments remain in apparent disagreement on the role played by the earliest stages of the visual cortex in supporting a visual percept. Here, we report electrophysiological findings that shed light on this issue. We monitored neural activity in the visual cortex of monkeys as they reported their perception of a high-contrast visual stimulus that was induced to vanish completely from perception on a subset of trials. We found that the spiking of neurons in cortical areas V1 and V2 was uncorrelated with the perceptual visibility of the target, whereas that in area V4 showed significant perception-related changes. In contrast, power changes in the lower frequency bands (particularly 9-30 Hz) of the local field potential (LFP), collected on the same trials, showed consistent and sustained perceptual modulation in all three areas. In addition, for the gamma frequency range (30-50 Hz), the responses during perceptual suppression of the target were correlated significantly with the responses to its physical removal in all areas, although the modulation magnitude was considerably higher in area V4 than in V1 and V2. These results, taken together, suggest that low-frequency LFP power in early cortical processing is more closely related to the representation of stimulus visibility than is spiking or higher frequency LFP activity.

PMID:
17088545
PMCID:
PMC1859959
DOI:
10.1073/pnas.0604673103
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center