Format

Send to

Choose Destination
See comment in PubMed Commons below
BMC Evol Biol. 2006 Nov 3;6:88.

Complex host-pathogen coevolution in the Apterostigma fungus-growing ant-microbe symbiosis.

Author information

1
Section of Integrative Biology, University of Texas at Austin, Austin, TX, USA. ngerardo@email.arizona.edu

Abstract

BACKGROUND:

The fungus-growing ant-microbe symbiosis consists of coevolving microbial mutualists and pathogens. The diverse fungal lineages that these ants cultivate are attacked by parasitic microfungi of the genus Escovopsis. Previous molecular analyses have demonstrated strong phylogenetic congruence between the ants, the ants-cultivated fungi and the garden pathogen Escovopsis at ancient phylogenetic levels, suggesting coevolution of these symbionts. However, few studies have explored cophylogenetic patterns between these symbionts at the recent phylogenetic levels necessary to address whether these parasites are occasionally switching to novel hosts or whether they are diversifying with their hosts as a consequence of long-term host fidelity.

RESULTS:

Here, a more extensive phylogenetic analysis of Escovopsis lineages infecting the gardens of Apterostigma ants demonstrates that these pathogens display patterns of phylogenetic congruence with their fungal hosts. Particular clades of Escovopsis track particular clades of cultivated fungi, and closely-related Escovopsis generally infect closely-related hosts. Discordance between host and parasite phylogenies, however, provides the first evidence for occasional host-switches or acquisitions of novel infections from the environment.

CONCLUSION:

The fungus-growing ant-microbe association has a complex coevolutionary history. Though there is clear evidence of host-specificity on the part of diverse Escovopsis lineages, these pathogens have switched occasionally to novel host fungi. Such switching is likely to have profound effects on how these host and parasites adapt to one another over evolutionary time scales and may impact how disease spreads over ecological time scales.

PMID:
17083733
PMCID:
PMC1635738
DOI:
10.1186/1471-2148-6-88
[Indexed for MEDLINE]
Free PMC Article

Publication types, MeSH terms, Substances, Secondary source ID

Publication types

MeSH terms

Substances

Secondary source ID

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for BioMed Central Icon for PubMed Central
    Loading ...
    Support Center