Send to

Choose Destination
Nature. 2006 Nov 2;444(7115):75-8.

Sub-kelvin optical cooling of a micromechanical resonator.

Author information

Department of Physics, University of California, Santa Barbara, California 93106, USA.


Micromechanical resonators, when cooled down to near their ground state, can be used to explore quantum effects such as superposition and entanglement at a macroscopic scale. Previously, it has been proposed to use electronic feedback to cool a high frequency (10 MHz) resonator to near its ground state. In other work, a low frequency resonator was cooled from room temperature to 18 K by passive optical feedback. Additionally, active optical feedback of atomic force microscope cantilevers has been used to modify their response characteristics, and cooling to approximately 2 K has been measured. Here we demonstrate active optical feedback cooling to 135 +/- 15 mK of a micromechanical resonator integrated with a high-quality optical resonator. Additionally, we show that the scheme should be applicable at cryogenic base temperatures, allowing cooling to near the ground state that is required for quantum experiments--near 100 nK for a kHz oscillator.

Comment in


Supplemental Content

Full text links

Icon for Nature Publishing Group
Loading ...
Support Center