Send to

Choose Destination
See comment in PubMed Commons below
Int J Biochem Cell Biol. 2007;39(2):379-91. Epub 2006 Sep 24.

Platelet-derived growth factor receptor-alpha is a key determinant of smooth muscle alpha-actin filaments in bone marrow-derived mesenchymal stem cells.

Author information

UK Centre for Tissue Engineering, Faculty of Life Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK.


Smooth muscle alpha-actin filaments are a defining feature of mesenchymal stem cells, and of mesenchyme-derived contractile smooth muscle cells, pericytes and myofibroblasts. Here, we show that adult bone marrow-derived mesenchymal stem cells express abundant cell surface platelet-derived growth factor receptor-alpha, having a high ratio to platelet-derived growth factor receptor-beta. Signaling through platelet-derived growth factor receptor-alpha increases smooth muscle alpha-actin filaments by activating RhoA, which results in Rho-associated kinase (ROCK)-dependent cofilin phosphorylation, enhancing smooth muscle alpha-actin filament polymerization, and also upregulates smooth muscle alpha-actin expression. In contrast, platelet-derived growth factor receptor-beta signaling strongly upregulates RhoE, which inhibits ROCK activity, promoting smooth muscle alpha-actin filament depolymerization. This study thus provides new insights into the distinct roles of platelet-derived growth factor receptor-alpha and -beta signaling in regulating the adult mesenchymal stem cell contractile cytoskeleton.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center