Format

Send to

Choose Destination
See comment in PubMed Commons below
Am J Physiol Gastrointest Liver Physiol. 2007 Mar;292(3):G939-51. Epub 2006 Oct 26.

Effect of SCP-x gene ablation on branched-chain fatty acid metabolism.

Author information

  • 1Department of Physiology and Pharmacology, Texas A and M University, College Station, Texas 77843, USA.

Abstract

Despite the importance of peroxisomal oxidation in branched-chain lipid (phytol, cholesterol) detoxification, little is known regarding the factors regulating the peroxisomal uptake, targeting, and metabolism of these lipids. Although in vitro data suggest that sterol carrier protein (SCP)-x plays an important role in branched-chain lipid oxidation, the full physiological significance of this peroxisomal enzyme is not completely clear. To begin to resolve this issue, SCP-x-null mice were generated by gene ablation of SCP-x from the SCP-x/SCP-2 gene and fed a phytol-enriched diet to characterize the effects of lipid overload in a system with minimal 2/3-oxoacyl-CoA thiolytic activity. It was shown that SCP-x gene ablation 1) did not result in reduced expression of SCP-2 (previously thought to be derived in considerable part by posttranslational cleavage of SCP-x); 2) increased expression levels of key enzymes involved in alpha- and beta-oxidation; and 3) altered lipid distributions, leading to decreased hepatic fatty acid and triglyceride levels. In response to dietary phytol, lack of SCP-x resulted in 1) accumulation of phytol metabolites despite substantial upregulation of hepatic peroxisomal and mitochondrial enzymes; 2) reduced body weight gain and fat tissue mass; and 3) hepatic enlargement, increased mottling, and necrosis. In summary, the present work with SCP-x gene-ablated mice demonstrates, for the first time, a direct physiological relationship between lack of SCP-x and decreased ability to metabolize branched-chain lipids.

PMID:
17068117
DOI:
10.1152/ajpgi.00308.2006
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center