Format

Send to

Choose Destination
See comment in PubMed Commons below
J Assoc Res Otolaryngol. 2006 Dec;7(4):412-24. Epub 2006 Oct 26.

Temporal coding by cochlear nucleus bushy cells in DBA/2J mice with early onset hearing loss.

Author information

1
Department of Otolaryngology/Head and Neck Surgery, University of North Carolina, 1115 Bioinformatics Building, CB#7070, Chapel Hill, NC 27599-7070, USA. yong_wang@med.unc.edu

Abstract

The bushy cells of the anterior ventral cochlear nucleus (AVCN) preserve or improve the temporal coding of sound information arriving from auditory nerve fibers (ANF). The critical cellular mechanisms entailed in this process include the specialized nerve terminals, the endbulbs of Held, and the membrane conductance configuration of the bushy cell. In one strain of mice (DBA/2J), an early-onset hearing loss can cause a reduction in neurotransmitter release probability, and a smaller and slower spontaneous miniature excitatory postsynaptic current (EPSC) at the endbulb synapse. In the present study, by using a brain slice preparation, we tested the hypothesis that these changes in synaptic transmission would degrade the transmission of timing information from the ANF to the AVCN bushy neuron. We show that the electrical excitability of bushy cells in hearing-impaired old DBA mice was different from that in young, normal-hearing DBA mice. We found an increase in the action potential (AP) firing threshold with current injection; a larger AP afterhyperpolarization; and an increase in the number of spikes produced by large depolarizing currents. We also tested the temporal precision of bushy cell responses to high-frequency stimulation of the ANF. The standard deviation of spikes (spike jitter) produced by ANF-evoked excitatory postsynaptic potentials (EPSPs) was largely unaffected in old DBA mice. However, spike entrainment during a 100-Hz volley of EPSPs was significantly reduced. This was not a limitation of the ability of bushy cells to fire APs at this stimulus frequency, because entrainment to trains of current pulses was unaffected. Moreover, the decrease in entrainment is not attributable to increased synaptic depression. Surprisingly, the spike latency was 0.46 ms shorter in old DBA mice, and was apparently attributable to a faster conduction velocity, since the evoked excitatory postsynaptic current (EPSC) latency was shorter in old DBA mice as well. We also tested the contribution of the low-voltage-activated K+ conductance (g (KLV)) on the spike latency by using dynamic clamp. Alteration in g (KLV) had little effect on the spike latency. To test whether these changes in DBA mice were simply a result of continued postnatal maturation, we repeated the experiments in CBA mice, a strain that shows normal hearing thresholds through this age range. CBA mice exhibited no reduction in entrainment or increased spike jitter with age. We conclude that the ability of AVCN bushy neurons to reliably follow ANF EPSPs is compromised in a frequency-dependent fashion in hearing-impaired mice. This effect can be best explained by an increase in spike threshold.

PMID:
17066341
PMCID:
PMC1785302
DOI:
10.1007/s10162-006-0052-9
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer Icon for PubMed Central
    Loading ...
    Support Center